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Abstract. We consider the O(3) gauge transformation far three-state vener models on 
lattices of coordination number three. Using an explicir mapping between O(3) and SL(21, 
we establish that there exist exactly six polynomials of the vener weights, which are 
fundamentally invariant under the O(3) transformation. Explicit expressions of these 
fundamental invariants are obtained in the case of symmetric vertex weights. 

The consideration of gauge transformations has played a central role in the study of 
discrete spin systems. The gauge transformation is a linear transformation of the 
Boltzmann weights of a spin system, such as a vertex model, which does not alter the 
partition function. In a classic paper Wegner [ l ]  formulated the gauge transformation 
for discrete spin systems, generalizing the previously known duality and weak-graph 
transformations. Properties pertaining to specific spin and lattice systems remain, 
however, to be worked out on a case by case basis. For example, those pertaining to 
the O(2) transformation for the 16-vertex model on the square lattice have subsequently 
been studied by Hijmans ef al [2-41. 

Of particular interest in statistical mechanics is the construction of invariants of 
the transformation, a subject matter of great interest in mathematics at the turn of the 
century [5-71. In statistical mechanics the invariants of the O(2) transformation for 
2-state vertex models have been utilized to determine the criticality of the king models 
in a non-zero magnetic field [S-121. In the case of the O(2) transformation it has been 
possible to explicitly construct the invariants [12, 131. The direct construction of 
invariants for O(3)  is more complicated, however. But the day is saved since there 
exists a mapping between O(3) and SL(2), and invariants for the latter are already 
known. In this letter we utilize this mapping to obtain invariants of the O(3) gauge 
transformation which is applicable to 3-state spin systems. 

Consider a lattice of coordination number 3, which can be in any spatial dimension, 
and assume that each of the lattice edges can be independently in one of three distinct 
states. With each lattice site we associate a vertex weight W ( s , ,  s2, s3), where si = 1,2 
and 3 specifies the states of the three incident edges. This defines a 27-vertex model 
and the partition function Z = X n  W ( s , ,  s2. sl), where the summation is taken over 
all edge configurations of the lattice. 

Wegner [ I] has shown that the partition function Z remains unchanged if the vertex 
weights W are replaced by @ given by 
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provided that R, are elements of a 3 x 3 matrix R associated withlattice edges satisfying 
RR = I, where R is the transpose of R and I is the identity matrix. This implies 
detlR,,I = +l, and, consequently, the transformation (1) leaves ~,,, ,vv, W 2 ( s , ,  s,, s3) 
invariant and thus gives rise to a representation of the three-dimensional orthogonal 
group O(3). In reality the validity of the invariance of the partition function holds 
more generally even if R is edge-dependent [l]. For this reason we refer to ( I )  as the 
O(3) gauge transformation. 

Explicitly, O(3) is a three-parameter group. For SO(3) or detJR,,I = 1, e.g., we can 
write 

(2) 1 ( -sz -SIC, CIC, 

c2c3 -sIszc,+cIs3 c,s,c,+s,s, 
R =  - c ~ s ,  c,c,+s,s,s, - C ~ S ~ S ~ + S ~ C ,  

where c, =cos Oi, s, =sin Oi. This can be interpreted as a rotation in the 3-space by first 
making a rotation 8, about the x axis, followed by a rotation of O2 about the y axis 
and finally a rotation O3 about z axis [ 141. 

Generally, the transformation ( I )  forms a representation of O(3) in the space of 
tensors of rank 3. Let y , ,  y , ,  y ,  be the coordinates of the fundamental representation 
space of O(3). Then the general tensors of rank 3 form a 33-dimensional space with 
basis y,,,Oy.Oyk, where the three y's (first, second, and third) refer to specific incident 
edges, and the subscripts specify the state of the incident edge. 

The consideration is much simplified when the vertex weights are symmetric, i.e. 
W ( s , ,  s,. s,) is independent of the permutation of sI, s2. and s3. In this case, we can 
conveniently relabel the vertex weights as ol, where i, j, k are, respectively, the 
numbers of incident edges in states 1, 2, 3 subject to i + j + k = 3 .  Thus, the 27 vertex 
weights reduce to 10 independent ones whose associated configurations are shown in 
figure 1, and ( I )  gives rise to a 10x10 matrix representation of O(3). Furthermore, 
the tensor product of the basis y,,,@yn@yr can be replaced by an ordinary product, 
and the vertex weights can be written as given by the polynomial representation 

i+j+ k=3 .  ( 5 )  i j k  
Wgk = Y , Y 2 y 3  

It  is well known that the special unitary group SU(2) is two-to-one homomorphic 
to S0(3), a familiar example being the spinor representation of the rotation group in 

W O V  ut01 W120 WOZI Wilt 

Figure 1. The ten vertex configuralions and the weights of a symmetric 3-slate 27-vertex 
model. The vertex configuration with weight wql is charaaerized by i broken, j thick, and 
k thin lines. 
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quantum mechanics. In addition, the invariants of SU(2) are identical to those of the 
special linear group SL(2). It follows that we can deduce the invariants of O(3) from 
those already known for SL(2). (Strictly speaking, this leads to invariants for S0(3), 
which may change sign under the odd elements of 0 ( 3 ) . )  We first describe the mapping 
of the representations for the two groups. 

Let a, and a2 be the coordinates of the fundamental representation space of SL(2) .  
The mapping between a,, a2 and the coordinates y , ,  y,, y, of the vector representation 
of O(3) is 

z, = a: = -y, + iy, z 2 = a 1 a z = y 2  3 -  = a 2 -  2 - ~ l + i ~ 3  (4) 
where z,, z2, z3 form the coordinates of a rank-two symmetric tensor. 

In view of (3) and (4), wBk are raised to the sixth power of a, and therefore invariants 
of O(3) must be given by tensors of rank six in {a,, a2) with elements in the binary form 

5 e n -  = a 6 -  1 - 2 1  3 

e, = a ,a2 = (z:z3 +4z,z:) /5  

e3= a:a:=(2z:+3z,z2z3)/5 ( 5 )  
e4= a:a;'=(z:z,+4z3z:)/5 

e, = a,a, = z:z2 
4 2  

2 e = z3 e,- a,.: = z2z, 6 -  2 -  3. 

Here, coefficients on the RHS are determined according to the following rules: (i) write 
each e, as the average of all distinct permutations of the six a,, (ii) for each permutation, 
group the six z, into three consecutive pairs, and (iii) replace the grouped pairs 
by z, using (4). For example, the first four lines of ( 5 )  are obtained from: 

e n = ( a , a l ) ( ~ , ~ , ) ( ~ , ~ l ) = z :  
e, =a[(alal)(a,a,)(a,a2)+all  permutations of the six a.] =6(62:z2)= z:z2 

e z = ~ [ ( a , u , ) ( a , n , ) ( a 2 a 2 ) + a l l  permutations of the six a2]  =&(12z:z2+3z:z,) 

e, =&[(a,a,)(a,a,)(  a2a2)  +all permutations of the six U!] =$j(122,z2z3+ 82;). 
The polynomial nature of symmetric tensors now makes it possible to simply 

substitute (4) and (3) into ( 5 ) .  leading to the following explicit expressions for the e,: 

e o = u + i u  e ,=s+i f  e2 = ( x +  iy)/5 

e6=-u+iu  e ,=s- i t  e,= (-x+iy)/5 ( 6 )  
e, = (2w,,n-3~21n-30012)/5 

where 

u = 3 0 , , , - 0 , ,  

u=3%n,-Woo, Y = 4 ~ 0 2 1  - ~ 0 0 3 - ~ 2 n i  (7) 
a = w 2 , 0 - w n ~ 2  1=2w, , , .  

x = w300+ 0 1 0 2  -40120 

We now look for polynomials of the vertex weights ( 3 )  which are the fundamental 
invariants of the O(3)  transformation, i.e. they cannot be expressed as invariants of 
lower degrees and all other polynomial invariants are polynomials of them. 

The ten-dimensional representation of O(3) can be decomposed into two invariant 
subspaces of dimensions 3 and 7. While group-theoretic argument exists for its reason- 
ing, this decomposition also arises as a consequence of the mapping between O(3) 
and SL(2) in the binary form ( 5 ) :  the presence of seven elements in ( 5 )  implies the 
existence of a seven-dimensional invariant subspace. 
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The elements of three-dimensional invariant subspace can be found easily. They are 

1 1 1  = %00+ %I,+ 0 1 2 0  = Y d Y : + Y :  + Y : )  

112= 0010+ WO,,+ 0210  =Y,(Y:+Y:+Y:) ( 8 )  

71 %43f0021 +U201 = Yl(Y:+Y:+Y:). 

Obviously, this subspace transforms in the same way as the { y , ,  y , ,  y 3 }  space. There 
is only one fundamental invariant in this subspace, namely, 

lo= q:+q:+q:. ( 9 )  
To find the fundamental invariants in the seven-dimensional invariant subspace 

mapped to SL(2). we make use of results known for SL(2). It is known [6, p 1561 that 
the complete set of irreducible sextic invariants for SL(2) consists of five polynomials. 
In the mathematical literature [ 6 , 7 ] ,  these are given in concise, yet symbolic, forms 
as follows: 

I - ( i  ' (4) I, = (Lf 2 -  , I )  

r, = ( I ,  I ) ( ' )  I ,  = (L 13)(6)  (10) 
rs = ((1; i)"), IJ)(') 

f =  (a. x)" 

i = (f;f)"'= (ap)*(a. x ) ~ ( P .  x ) ~  

l = ( L  i ) ' " ' = ' ( r ~ p ) ~ ( a y ) ~ ( p y ) ~ ( a . x ) ~  

where 

Here, for any 

f = ( a . x , ) ( 0 1 . x 2 ) . .  , (..X") 

g = ( P  . X A P .  x2) . . . ( 0 .  X") 

we have 

where C = [ r ! ( y ) ( : ) ] - '  and the summation extends to all distinct permutations P and 
Q of the r integers 1.2, .  . . , r. In ( lo) ,  the degree of the invariants as polynomials in 
the e, is the same as the degree in the fs. Thus, we find I,, 12, I , ,  I4 and Is of degrees 
2, 4, 6, 10 and 15, respectively, in the e,. 

We caution that the above notations are highly symbolic and should be deciphered 
with care. Particularly, since the as have only symbolical meaning, they can be replaced 
by other symbols, i.e. a. x = p . x = y .  x. After some reductions, we find the following 
explicit expressions of fundamental invariants: 

J ,  = 12/2= eoe,-6e,es+15e2e,- 10e: 

J2 = 1,124 - J:/36 = -e:+ e:(eoe6 + 2e,e5 +3e2e4) 
(14) 

+eoe:+eoe2e:-2e,e,(e,e4+e,e,)+e2e,(2e,eS-e,e6) 

+e6e:+e,e,e:-2ele2(ese2+e6el)-2e:e:. 
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Explicit expressions of I , ,  I4 and Is, which can be worked out in a straightforward 
fashion, are un-illuminatively complicated, and will not be presented. It may be 
explicitly verified by substituting (6) and (7) into (9) and (14) that the Is and J s  are 
invariant under the permutation of the subscripts {i ,  j ,  k }  of the vertex weights oux, as 
required by the symmetry of the three spin states of the lattice edges. 

Of special interest in statistical mechanical applications is the subspace e, = e, = e, = 
0 pertaining to the spin-1 Blume-Emery-Griffiths model [IS]. The intersections of the 
six fundamental invariants in this subspace possess a much simpler form. We find, in 
addition t o  I ,  and l , = O ,  the following expressions: 

J ,  = A + 15B 

J , = C - B ~ - A B  

J,  = ACf3BC -2B’-6AB2 (15) 

J4=4(SA-9B)C2+(A3++21A2B-93ABZ+ 135B’)C 

+2B2(9A’ - S9A‘B +99AB2 - 818’) 

where A=e,e,, B=e,e, ,  C=e:e,+e:e, ,  J3=1,/24+4J,J2/3, J4=14/64. 

This work has been supported in part by the National Science Foundation Grants 
DMR-8918903 and DMR-9015489. We would like to thank Nolan R Wallach for 
bringing to our attention the useful literatures on  invariants. 
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