The $O(3)$ gauge transformation and 3 -state vertex models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 24 L503
(http://iopscience.iop.org/0305-4470/24/10/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 10:23

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The $\mathbf{O}(3)$ gauge transformation and 3-state vertex models

Leh-Hun Gwa ${ }^{\dagger}$ and F Y Wu \ddagger
\dagger Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA
\ddagger Department of Physics, Northeastern University, Boston, MA 02115, USA

Received 22 January 1991

Abstract

We consider the $\mathrm{O}(3)$ gauge transformation for three-state vertex models on lattices of coordination number three. Using an explicit mapping between $\mathrm{O}(3)$ and $\mathrm{SL}(2)$, we establish that there exist exactly six polynomials of the vertex weights, which are fundamentally invariant under the $O(3)$ transformation. Explicit expressions of these fundamental invariants are obtained in the case of symmetric vertex weights.

The consideration of gauge transformations has played a central role in the study of discrete spin systems. The gauge transformation is a linear transformation of the Boltzmann weights of a spin system, such as a vertex model, which does not alter the partition function. In a classic paper Wegner [1] formulated the gauge transformation for discrete spin systems, generalizing the previously known duality and weak-graph transformations. Properties pertaining to specific spin and lattice systems remain, however, to be worked out on a case by case basis. For example, those pertaining to the $\mathrm{O}(2)$ transformation for the 16 -vertex model on the square lattice have subsequently been studied by Hijmans et al [2-4].

Of particular interest in statistical mechanics is the construction of invariants of the transformation, a subject matter of great interest in mathematics at the turn of the century [5-7]. In statistical mechanics the invariants of the $\mathrm{O}(2)$ transformation for 2-state vertex models have been utilized to determine the criticality of the Ising models in a non-zero magnetic field [8-12]. In the case of the $O(2)$ transformation it has been possible to explicitly construct the invariants [12, 13]. The direct construction of invariants for $\mathrm{O}(3)$ is more complicated, however. But the day is saved since there exists a mapping between $O(3)$ and $\operatorname{SL}(2)$, and invariants for the latter are already known. In this letter we utilize this mapping to obtain invariants of the $O(3)$ gauge transformation which is applicable to 3 -state spin systems.

Consider a lattice of coordination number 3 , which can be in any spatial dimension, and assume that each of the lattice edges can be independently in one of three distinct states. With each lattice site we associate a vertex weight $W\left(s_{1}, s_{2}, s_{3}\right)$, where $s_{i}=1,2$ and 3 specifies the states of the three incident edges. This defines a 27 -vertex model and the partition function $Z=\Sigma \Pi W\left(s_{1}, s_{2}, s_{3}\right)$, where the summation is taken over all edge configurations of the lattice.

Wegner [1] has shown that the partition function Z remains unchanged if the vertex weights W are replaced by \tilde{W} given by

$$
\begin{equation*}
\tilde{W}\left(t_{1}, t_{2}, t_{3}\right)=\sum_{s_{1}=1}^{3} \sum_{s_{2}=1}^{3} \sum_{s_{3}=1}^{3} R_{t_{1} s_{1}} R_{t_{2} s_{2}} R_{t_{3} s_{3}} W\left(s_{1}, s_{2}, s_{3}\right) \tag{1}
\end{equation*}
$$

provided that $R_{t s}$ are elements of a 3×3 matrix \mathbf{R} associated with lattice edges satisfying $\tilde{\mathbf{R}} \mathbf{R}=\boldsymbol{I}$, where $\tilde{\mathbf{R}}$ is the transpose of \mathbf{R} and \mathbf{I} is the identity matrix. This implies $\operatorname{det}\left|R_{t s}\right|= \pm 1$, and, consequently, the transformation (1) leaves $\sum_{s_{1}, s_{2}, s_{3}} W^{2}\left(s_{1}, s_{2}, s_{3}\right)$ invariant and thus gives rise to a representation of the three-dimensional orthogonal group $O(3)$. In reality the validity of the invariance of the partition function holds more generally even if \mathbf{R} is edge-dependent [1]. For this reason we refer to (1) as the $O(3)$ gauge transformation.

Explicitly, $\mathrm{O}(3)$ is a three-parameter group. For $\mathrm{SO}(3)$ or $\operatorname{det}\left|R_{t s}\right|=1$, e.g., we can write

$$
\mathbf{R}=\left(\begin{array}{ccc}
c_{2} c_{3} & -s_{1} s_{2} c_{3}+c_{1} s_{3} & c_{1} s_{2} c_{3}+s_{1} s_{3} \tag{2}\\
-c_{2} s_{3} & c_{1} c_{3}+s_{1} s_{2} s_{3} & -c_{1} s_{2} s_{3}+s_{1} c_{3} \\
-s_{2} & -s_{1} c_{2} & c_{1} c_{2}
\end{array}\right)
$$

where $c_{i}=\cos \theta_{i}, s_{i}=\sin \theta_{i}$. This can be interpreted as a rotation in the 3 -space by first making a rotation θ_{1} about the x axis, followed by a rotation of θ_{2} about the y axis and finally a rotation θ_{3} about z axis [14].

Generally, the transformation (1) forms a representation of $\mathrm{O}(3)$ in the space of tensors of rank 3. Let y_{1}, y_{2}, y_{3} be the coordinates of the fundamental representation space of $O(3)$. Then the general tensors of rank 3 form a 3^{3}-dimensional space with basis $y_{m} \otimes y_{n} \otimes y_{k}$, where the three y 's (first, second, and third) refer to specific incident edges, and the subscripts specify the state of the incident edge.

The consideration is much simplified when the vertex weights are symmetric, i.e. $W\left(s_{1}, s_{2}, s_{3}\right)$ is independent of the permutation of s_{1}, s_{2}, and s_{3}. In this case, we can conveniently relabel the vertex weights as $\omega_{i j k}$, where i, j, k are, respectively, the numbers of incident edges in states $1,2,3$ subject to $i+j+k=3$. Thus, the 27 vertex weights reduce to 10 independent ones whose associated configurations are shown in figure 1 , and (1) gives rise to a 10×10 matrix representation of $O(3)$. Furthermore, the tensor product of the basis $y_{m} \otimes y_{n} \otimes y_{k}$ can be replaced by an ordinary product, and the vertex weights can be written as given by the polynomial representation

$$
\begin{equation*}
\omega_{i j k}=y_{1}^{i} y^{j} y_{3}^{k} \quad i+j+k=3 . \tag{3}
\end{equation*}
$$

It is well known that the special unitary group $\mathrm{SU}(2)$ is two-to-one homomorphic to $\mathrm{SO}(3)$, a familiar example being the spinor representation of the rotation group in

4300

4.1 0300

${ }^{4} 003$

w_{102}

ω_{120}

出 ${ }^{119}$

ω_{021}

${ }^{6} 210$

ω_{201}

Figure 1. The ten vertex configurations and the weights of a symmetric 3-state 27 -vertex model. The vertex configuration with weight $\omega_{i j h}$ is characterized by i broken, j thick, and k thin lines.
quantum mechanics. In addition, the invariants of $\operatorname{SU}(2)$ are identical to those of the special linear group $\operatorname{SL}(2)$. It follows that we can deduce the invariants of $O(3)$ from those already known for SL(2). (Strictly speaking, this leads to invariants for SO(3), which may change sign under the odd elements of $O(3)$.) We first describe the mapping of the representations for the two groups.

Let α_{1} and α_{2} be the coordinates of the fundamental representation space of SL(2). The mapping between α_{1}, α_{2} and the coordinates y_{1}, y_{2}, y_{3} of the vector representation of $O(3)$ is

$$
\begin{equation*}
z_{1} \equiv \alpha_{1}^{2}=-y_{1}+\mathrm{i} y_{3} \quad z_{2} \equiv \alpha_{1} \alpha_{2}=y_{2} \quad z_{3} \equiv \alpha_{2}^{2}=y_{1}+\mathrm{i} y_{3} \tag{4}
\end{equation*}
$$

where z_{1}, z_{2}, z_{3} form the coordinates of a rank-two symmetric tensor.
In view of (3) and (4), $\omega_{i j k}$ are raised to the sixth power of α_{i} and therefore invariants of $O(3)$ must be given by tensors of rank six in $\left\{\alpha_{1}, \alpha_{2}\right\}$ with elements in the binary form

$$
\begin{align*}
& e_{0} \equiv \alpha_{1}^{6}=z_{1}^{3} \quad e_{1} \equiv \alpha_{1}^{5} \alpha_{2}=z_{1}^{2} z_{2} \\
& e_{2} \equiv \alpha_{1}^{4} \alpha_{2}^{2}=\left(z_{1}^{2} z_{3}+4 z_{1} z_{2}^{2}\right) / 5 \\
& e_{3} \equiv \alpha_{1}^{3} \alpha_{2}^{3}=\left(2 z_{2}^{3}+3 z_{1} z_{2} z_{3}\right) / 5 \tag{5}\\
& e_{4} \equiv \alpha_{1}^{2} \alpha_{2}^{4}=\left(z_{3}^{2} z_{1}+4 z_{3} z_{2}^{2}\right) / 5 \\
& e_{5} \equiv \alpha_{1} \alpha_{2}^{5}=z_{2} z_{3}^{2} \quad e_{6} \equiv \alpha_{2}^{6}=z_{3}^{3} .
\end{align*}
$$

Here, coefficients on the RHS are determined according to the following rules: (i) write each e_{j} as the average of all distinct permutations of the six α_{i}, (ii) for each permutation, group the six z_{i} into three consecutive pairs, and (iii) replace the grouped pairs by z_{i} using (4). For example, the first four lines of (5) are obtained from:
$e_{0}=\left(\alpha_{1} \alpha_{1}\right)\left(\alpha_{1} \alpha_{1}\right)\left(\alpha_{1} \alpha_{1}\right)=z_{1}^{3}$
$e_{1}=\frac{1}{6}\left[\left(\alpha_{1} \alpha_{1}\right)\left(\alpha_{1} \alpha_{1}\right)\left(\alpha_{1} \alpha_{2}\right)+\right.$ all permutations of the six $\left.\alpha_{i}\right]=\frac{1}{6}\left(6 z_{1}^{2} z_{2}\right)=z_{1}^{2} z_{2}$
$e_{2}=\frac{1}{15}\left[\left(\alpha_{1} \alpha_{1}\right)\left(\alpha_{1} \alpha_{1}\right)\left(\alpha_{2} \alpha_{2}\right)+\right.$ all permutations of the six $\left.\alpha_{i}\right]=\frac{1}{15}\left(12 z_{1}^{2} z_{2}+3 z_{1}^{2} z_{3}\right)$
$e_{3}=\frac{1}{20}\left[\left(\alpha_{1} \alpha_{1}\right)\left(\alpha_{1} \alpha_{2}\right)\left(\alpha_{2} \alpha_{2}\right)+\right.$ all permutations of the six $\left.\alpha_{i}\right]=\frac{1}{20}\left(12 z_{1} z_{2} z_{3}+8 z_{2}^{3}\right)$.
The polynomial nature of symmetric tensors now makes it possible to simply substitute (4) and (3) into (5), leading to the following explicit expressions for the e_{j} :

$$
\begin{array}{lcr}
e_{0}=u+\mathrm{i} v & e_{1}=s+\mathrm{i} t & e_{2}=(x+\mathrm{i} y) / 5 \\
e_{6}=-u+\mathrm{i} v & e_{5}=s-\mathrm{i} t & e_{4}=(-x+\mathrm{i} y) / 5 \tag{6}\\
e_{3}=\left(2 \omega_{030}-3 \omega_{210}-3 \omega_{012}\right) / 5 &
\end{array}
$$

where

$$
\begin{array}{ll}
u=3 \omega_{102}-\omega_{300} & x=\omega_{300}+\omega_{102}-4 \omega_{120} \\
v=3 \omega_{201}-\omega_{003} & y=4 \omega_{021}-\omega_{003}-\omega_{201} \tag{7}\\
a=\omega_{210}-\omega_{012} & t=2 \omega_{111} .
\end{array}
$$

We now look for polynomials of the vertex weights (3) which are the fundamental invariants of the $O(3)$ transformation, i.e. they cannot be expressed as invariants of lower degrees and all other polynomial invariants are polynomials of them.

The ten-dimensional representation of $\mathrm{O}(3)$ can be decomposed into two invariant subspaces of dimensions 3 and 7 . While group-theoretic argument exists for its reasoning, this decomposition also arises as a consequence of the mapping between $\mathbf{O}(3)$ and $\operatorname{SL}(2)$ in the binary form (5): the presence of seven elements in (5) implies the existence of a seven-dimensional invariant subspace.

The elements of three-dimensional invariant subspace can be found easily. They are

$$
\begin{align*}
& \eta_{1}=\omega_{300}+\omega_{102}+\omega_{120}=y_{1}\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}\right) \\
& \eta_{2}=\omega_{030}+\omega_{012}+\omega_{210}=y_{2}\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}\right) \tag{8}\\
& \eta_{3}=\omega_{003}+\omega_{021}+\omega_{201}=y_{3}\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}\right) .
\end{align*}
$$

Obviously, this subspace transforms in the same way as the $\left\{y_{1}, y_{2}, y_{3}\right\}$ space. There is only one fundamental invariant in this subspace, namely,

$$
\begin{equation*}
I_{0}=\eta_{1}^{2}+\eta_{2}^{2}+\eta_{3}^{2} \tag{9}
\end{equation*}
$$

To find the fundamental invariants in the seven-dimensional invariant subspace mapped to $\operatorname{SL}(2)$, we make use of results known for SL(2). It is known [6, p 156] that the complete set of irreducible sextic invariants for SL(2) consists of five polynomials. In the mathematical literature [6, 7], these are given in concise, yet symbolic, forms as follows:

$$
\begin{array}{ll}
I_{1}=(f, f)^{(6)} & I_{2}=(i, i)^{(4)} \\
I_{3}=(l, l)^{(2)} \quad I_{4}=\left(f, l^{3}\right)^{(6)} \tag{10}\\
I_{5}=\left((f, i)^{(1)}, l^{4}\right)^{(8)}
\end{array}
$$

where

$$
\begin{align*}
& f \equiv(\alpha \cdot x)^{6} \\
& i \equiv(f, f)^{(4)}=(\alpha \beta)^{4}(\alpha \cdot x)^{2}(\beta \cdot x)^{2} \\
& l \equiv(f, i)^{(4)}=(\alpha \beta)^{2}(\alpha \gamma)^{2}(\beta \gamma)^{4}(\alpha \cdot x)^{2} \tag{11}\\
& \alpha \cdot x \equiv \alpha_{1} x_{1}+\alpha_{2} x_{2} \quad(\alpha \beta) \equiv \alpha_{1} \beta_{2}-\beta_{1} \alpha_{2} .
\end{align*}
$$

Here, for any

$$
\begin{align*}
& f=\left(\alpha \cdot x_{1}\right)\left(\alpha \cdot x_{2}\right) \ldots\left(\alpha \cdot x_{m}\right) \\
& g=\left(\beta \cdot x_{1}\right)\left(\beta \cdot x_{2}\right) \ldots\left(\beta \cdot x_{n}\right) \tag{12}
\end{align*}
$$

we have

$$
\begin{equation*}
(f, g)^{(r)} \equiv C \sum_{P, Q} \frac{\left(\alpha_{P_{1}} \beta_{Q_{1}}\right)\left(\alpha_{P_{2}} \beta_{Q_{2}}\right) \ldots\left(\alpha_{P_{r}} \beta_{Q_{r}}\right)}{\left(\alpha \cdot x_{P_{1} 1}\right)\left(\alpha \cdot x_{P_{2}}\right) \ldots\left(\alpha \cdot x_{P_{r}}\right)\left(\beta \cdot x_{Q 1}\right)\left(\beta \cdot x_{Q 2}\right) \ldots\left(\beta \cdot x_{Q r}\right)} f g \tag{13}
\end{equation*}
$$

where $C=\left[r!\binom{m}{r}\binom{n}{r}\right]^{-1}$ and the summation extends to all distinct permutations P and Q of the r integers $1,2, \ldots, r$. $\ln (10)$, the degree of the invariants as polynomials in the e_{j} is the same as the degree in the $f \mathrm{~s}$. Thus, we find $I_{1}, I_{2}, I_{3}, I_{4}$ and I_{5} of degrees $2,4,6,10$ and 15 , respectively, in the e_{j}.

We caution that the above notations are highly symbolic and should be deciphered with care. Particularly, since the α s have only symbolical meaning, they can be replaced by other symbols, i.e. $\alpha \cdot x=\beta \cdot x=\gamma \cdot x$. After some reductions, we find the following explicit expressions of fundamental invariants:

$$
\begin{align*}
& J_{1} \equiv I_{2} / 2=e_{0} e_{6}-6 e_{1} e_{5}+15 e_{2} e_{4}-10 e_{3}^{2} \\
& J_{2} \equiv I_{2} / 24-J_{1}^{2} / 36=-e_{3}^{4}+e_{3}^{2}\left(e_{0} e_{6}+2 e_{1} e_{5}+3 e_{2} e_{4}\right) \\
& \quad+e_{0} e_{4}^{3}+e_{0} e_{2} e_{5}^{2}-2 e_{3} e_{4}\left(e_{1} e_{4}+e_{0} e_{5}\right)+e_{2} e_{4}\left(2 e_{1} e_{5}-e_{0} e_{6}\right) \tag{14}\\
&+e_{6} e_{2}^{3}+e_{6} e_{4} e_{1}^{2}-2 e_{3} e_{2}\left(e_{5} e_{2}+e_{6} e_{1}\right)-2 e_{1}^{2} e_{5}^{2} .
\end{align*}
$$

Explicit expressions of I_{3}, I_{4} and I_{5}, which can be worked out in a straightforward fashion, are un-illuminatively complicated, and will not be presented. It may be explicitly verified by substituting (6) and (7) into (9) and (14) that the Is and J s are invariant under the permutation of the subscripts $\{i, j, k\}$ of the vertex weights $\omega_{i j k}$, as required by the symmetry of the three spin states of the lattice edges.

Of special interest in statistical mechanical applications is the subspace $e_{1}=e_{3}=e_{5}=$ 0 pertaining to the spin-1 Blume-Emery-Griffiths model [15]. The intersections of the six fundamental invariants in this subspace possess a much simpler form. We find, in addition to I_{0} and $I_{5} \equiv 0$, the following expressions:
$J_{1}=A+15 B$
$J_{2}=C-B^{2}-A B$
$J_{3}=A C+3 B C-2 B^{3}-6 A B^{2}$
$J_{4}=4(5 A-9 B) C^{2}+\left(A^{3}+21 A^{2} B-93 A B^{2}+135 B^{3}\right) C$
$+2 B^{2}\left(9 A^{3}-59 A^{2} B+99 A B^{2}-81 B^{3}\right)$
where $A=e_{0} e_{6}, B=e_{2} e_{4}, C=e_{2}^{3} e_{6}+e_{4}^{3} e_{0}, J_{3}=I_{3} / 24+4 J_{1} J_{2} / 3, J_{4}=I_{4} / 64$.
This work has been supported in part by the National Science Foundation Grants DMR-8918903 and DMR-9015489. We would like to thank Nolan R Wallach for bringing to our attention the useful literatures on invariants.

References

[1] Wegner F J 1973 Physica 68570
[2] Gaaff A and Hijmans J 1975 Physica 80A 149; 1976 Physica 83A 301, 317; 1979 Physica 97A 244
[3] Hijmans J and Schram H M 1983 Physica 121A 479; 1984 Physica 125A 25
[4] Hijmans J 1985 Physica 130A 57
[5] Hilbert D 1890 Math. Ann. 36 473; 1893 Math. Ann. 42313
[6] Grace J H and Young A 1903 The Algebra of Invariants (Cambridge: Cambridge University Press)
[7] Glenn O E 1915 A Treatise of the Theory of Invariants (Boston MA: Ginn)
[8] Wu F Y, Wu X N and Blöte H W J 1989 Phys. Rev. Lett. 622773
[9] Gwa L H 1989 Phys. Rev. Lett. 631440
[10] Wu X N and Wu F Y 1990 Phys. Lett. 144A 123
[11] Blöte H W J and Wu X N 1990 J. Phys. A: Math. Gen. 23 L627
[12] Gwa L H 1990 Phys. Rev. B 417315
[13] Perk J H H, Wu F Y and Wu X N 1990 J. Phys. A: Math. Gen. 23 L131
[14] Wybourne B G 1974 Classical Groups for Physicists (New York: Wiley)
[15] Gwa L H and Wu F Y unpublished

